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Chapter 3

Probability

T he study of probability grew out of the gambling dens of Europe over three
centuries ago, when a few known mathematicians felt challenged to cal-
culate optimum strategies for winning certain bets and, later, when patrons, often
the aristocracy, further encouraged mathematicians with sums of money for pro-
viding such valued information. Much of what we study today is still based on
this early work, especially in our analysis of proportion data and broadly in the
use of basic terminology and underlying principles throughout the text.

In this chapter, we will study the concepts of probability mostly to help us
understand and define what is meant by p, the proportion or percentage of a
population that possesses a certain attribute, such as, the proportion or percentage
of a population that possesses the attribute of red hair or diabetes. Later, we will
discuss what we can expect when we sample from such a population.

In broad terms, we define probability as follows.

Probability

The proportion (or percentage) of times an event will occur in the long run,
under similar circumstances. This probability is expressed as a number
between 0 and 1 or as a percentage between 0 and 100.

Two methods we can use to obtain this probability are the empirical ap-
proximation and classical approach. We shall start with the empirical
approximation. V¥

m Probability Defined: Empirically

Empirical Approximation to Probability

The fraction of times an event #as actually occurred over a great many
experiments conducted over a long period of time under similar
circumstances, expressed as

Number of Times Event Has Actually Occurred
Total Number of Experiments (or Attermnpts)

Plan event) =

As the number of experiments increases, this empirical fraction gets closer
and closer to the true probability.

It is important to note that use of the empirical fraction requires an exper-
iment be performed a great many times over a long period and under similar
circumstances.

Let’s see how it works.
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Out of 100 consecutive tosses of a dart at a Thursday night tournament, a player
strikes the bull’s-eye 30 times. Calculate the probability of a bull’s-eye for this

player.

Although we might be tempted to say,

Number of Times the Event Has Actually Occurred

P(an event) =
(a ) Total Number of Attempts

30
P(bull’s-eye) = 100 this is incorrect.

This does not meet our full definition of empirical probability because we have
not performed the experiment a great many times over a long period, and there-
fore this may or may not be the true probability. So the answer to this question
is: from this limited information, we cannot determine the probability of a bull s-
eye for this player. @

Well, then, you might ask, how do we obtain this probability? One way is
to merely continue to perform the experiment (tossing the dart) a large number
of times. As the total number of dart throws increase, this fraction (which we
will call the cumulative fraction) gets closer and closer to the true probability,
expressed in the following law.

V Law of Large Numbers

If we continue to repeat an experiment a great many times under similar
circumstances, the cumulative fraction of successes will tend to draw closer
and closer to the /frve probability.

Let’s see how it works.

Say, for instance, for the first 100 tosses, we get 30 bull’s-eyes. Then for
the next 100 tosses, we get 12 bull’s-eyes. Although the two fractions for each
experiment would be 30/100 and 12/100, the cumulative fraction is 42 bull’s-
eyes (30 + 12) out of 200 total tosses, which would equal in percentage:

Note: 42/200 can be converted
to a percentage as follows:

42 bull’s-eyes

- = 21% Percent = Fraction x 100
200 tosses 42
= —-—2< x A0 = 21%
We can present this cumulative fraction in chart form as follows:
Number of Bull’s-eyes Cumulative Cumulative
Tosses Fraction Percentage
100 30 30/100 30%

100 12 42/200 21%
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If we plotted these results on a graph, it would look as follows:

30%

Cumulative
percentage

100 200
Total tosses

Now, what if we recorded a third set of 100 tosses where 9 bull’s-eyes were
achieved. The cumulative fraction would be 51 bull’s-eyes (30 + 12 + 9) out of
300 total tosses, which equals 51/300 or 17%. And it we recorded a fourth set
of 100 tosses, and so on for many sets of 100 tosses, we could represent this as
follows:

Number of Bull’s-eyes Cumulative Cumulative
Tosses Fraction Percentage
100 30 30/100 30%
100 12 42/200 21%
100 9 51/300 17%
100 21 72/400 18%
100 33 105/500 21%
100 27 132/600 22%
100 8 140,700 20%
100 12 152/800 19%
100 37 189/900 21%
100 21 210/1000 21%
100 10 220/1100 20%
100 14 234/1200 194%

Note that the cumulative fraction adds up all the prior bull’s-eyes and all
the prior tosses and presents this as one fraction. If we plot each cumulative
percentage, we get

30%

Cumulative
percentage

R e i -
18% 19/2%

17%

15%

L | 4 4 3
t t u t 1

100 200 300 400 500 600 700 800 900 1000 1100 1200

Total tosses
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Notice that even though the number of bull’s-eyes for each 100 tosses
drastically fluctuated in the chart, ranging from 8 to 37, creating a rather ragged
pattern at the beginning, the long-term line begins to smooth out as the number
of tosses increases.

Experience has shown, in the long run, provided no change in dart throwing
ability of the player or other factors that might affect this ability, the line will
eventually grow flat (horizontal), sticking very close to one particular value.
When this happens over many tosses, we call this percentage the f7ue probability
of a bull’s-eye for this player.

If we examine the preceding graph, we see the probability seems to be
leveling at about 20%. If indeed 20% is the true probability, we might represent
this probability on a circle graph as follows.

Probability of
a bull’s-eye = 20%

Probability, in essence, is a population value, the true percentage of times
the player will hit the bull’s-eye in the long run under similar circumstances. In
effect, it represents what will happen in millions and millions of tosses. This
probability may be presented as a percentage or decimal as follows:

P(bull’s-eye) = 20%
P(bull’s-eye) = .20

Later, when we discuss sampling, this population value, 20%, will be referred to
as the population proportion, p, expressed as

p=20% or
p=.20

This empirical method for assigning a probability to an event is often used
in the fields of psychology, education, biology, business, and medicine. For in-
stance, if a surgeon says you have a 95% chance of surviving an operation, the
surgeon is usually referring to an empirical probability. That is, in the long run,
over many similar operations in the past, about 95 out of 100 people have
survived.
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Subjective Probability

One word of caution: too often, people will offer you probabilities off the top of
their heads, which are no more than personal judgments. It is wise to request and
examine the source of all probabilities offered when these probabilities are to be
used in any subsequent decision-making process. Although some people are sur-
prisingly astute in their ability to assess the probability of a situation, which is
called subjective probability, others are not.

Subjective Probability
Assigning a probability based on personal judgment.

In this text, we use only those probabilities derived from the empirical method,
as described in the last few pages, or from the classical method, which is dis-
cussed in the next section.

m Probability Defined: Classically

The empirical definition of probability demands that we repeat an experiment a
great many times before we can estimate the true probability. However, in prac-
tical situations this is not always possible. In a situation where we can be assured
that every member of a set has an equal chance of being selected. then we have
a second method for obtaining a probability. This method is called the classical
approach.

Classical Probability
In an experiment of #7 different possibilities, each having an equa/ chance of
occurring, the probability a particular event will occur is equal to

Number of chances for success
Total number of egually likely possibilities

This can be expressed as

number of chances for success)

Plevent) = 2 (
17 (total equally likely possibilities)

Often the word, event, is replaced with the word, success, as follows:

S
P(success) = =

Example —————— Suppose you attend a party of 20 people, of which 3 are famous TV celebrities.
Now let’s pretend a huge Green Giant were to walk up, lift the roof, reach down
into the party and randomly pluck up 1 person by the collar. What is the proba-
bility the person selected is a famous TV celebrity?
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This is a typical probability experiment. Out of n = 20 different possibilities (in
this case, 20 different people), each having an equal chance of being selected,
there are 3 chances for success. Since we have 3 chances for success out of 20
different equally likely possibilities, the probability of selecting a famous TV
celebrity is given by the following formula:

s (number of chances for success)
P(success) = — . e
n (total equally likely possibilities)

2
P(of selecting a famous TV celebrity) = % [ |

Often these fractions are expressed as percentages or decimals. For in-
stance, the fraction 55 may be expressed as 15% or .15. To convert the fraction
5 to its equivalent percentage or decimal, we perform the following operation:

% = Fraction x 100 Decimal = Numerator of fraction + Denominator
3 =3+ 20=.15
=— x 100
20 15
. ;
IS or  2003.00 = .15
2% -20
= 15% 100
—100

So, instead of saying that the probability of selecting a famous TV celebrity is
s . we might state it as 15% or .15. Whether we use 3 or 15% or .15, these all
indicate the same probability, which is 3 chances for success out of 20
possibilities.

Two Fundamental Properties

In dealing with probability fractions, there are two fundamental properties.

V Property 1

The probability of an event occurring will always be a number between 0 and
1, inclusive.

0 = Plan event) = 1

no chance certain
to occur to occur
(0%) (100%)

“
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A probability of P = 0 means the event has no chance of occurring. If at
our party of 20 people we had no famous TV celebrities in attendance, then if
the Giant reached in and selected one person, the probability of selecting a famous
TV celebrity is 0 chances for success out of 20 possibilities or

‘ 0 P = 0is the minimum probability. This
P(SLLCCCSS) =—= means the event has no chance of occurring
20 and can be expressed as P = 0%.

A probability of P = 1 means the event is certain to occur. If at our party
of 20 people we had 20 famous TV celebrities (in other words, all were famous
TV celebrities), then if the Giant reached in and selected one person, the prob-
ability of selecting a famous TV celebrity is 20 chances for success out of 20
possibilities or

P = 1 s the maximum probability.

: N s B This means the event is certain
P(SUCCESS) - =1 to occur and can be expressed as
20
P = 100%.
V Property 2

The probability of an event occurring p/us the probability of the event no#
occurring = 1.

P(E) + Plnot £) = 1

Basically this property says there is a 100% probability that the event will
either occur or not occur.

What if at our party of 20 people, of which 3 are famous TV celebrities, a Green
Giant randomly plucks up one person by the collar, what is the probability the
person selected is not a famous TV celebrity?

Since we now have 17 chances for success (people who are not TV celebrities)
out of 20 equally likely possibilities,

s (number of chances for success)
P(success) = — . .
n (total equally likely possibilities)

17
P(of not selecting a famous TV celebrity) = T

This can also be expressed as 85% or .85. |
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Note that in our party example, the probability of nor selecting a TV ce-
lebrity (1) plus the probability of selecting a TV celebrity (5) is equal to 1. This
is a direct illustration of Property 2, as follows:

Property 2: P(E) + P(not £) = 1
c sed in fracti _3+l7_20_
xpressed in fractions: 0 20" 2
Expressed in percentages: 15% + 85% = 100% = i
Expressed in decimals: .15 + .85 = 1.00 = 1

For a 52-card deck, if we randomly select one card, what is the probability that
the card will be

a. aclub?

b. not a club?

c. a king or a queen?

d. a jack and a spade?

To apply our probability formula, we must be assured every card has an equal
chance of being selected. Random selection guarantees this, so now we can
proceed.
a. Each deck is divided into four suits: 13 clubs, 13 diamonds, 13 hearts, and
13 spades. Because we have 13 chances for success (13 clubs) out of n =
52 equally likely possibilities,
g (number of chances for success)

P(success) = — : g
n (total equally likely possibilities)

3
P(club) = = 1 can also be expressed as 23% or .25)

b. Since we have 13 clubs in a deck, we must have 39 (52 minus 13)
nonclubs, thus 39 chances for success.
5 (number of chances for success)

P(success) = —
/

=

(total equally likely possibilities)

39 .
P(not club) = 5 (2 can also be expressed as 75% or .75)

¢. Each deck has 4 kings and 4 queens. Since we have 8 chances for success
(4 + 4 = 8) out of 52 equally likely possibilities,
Ky (number of chances for success)
P(success) = — . e
n (total equally likely possibilities)
. _ 8 (& can also be expressed as
Filing of.gucen) = 52 approximately 15% or .15)
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Solution

Probability

d. Note that the conditions for success in this problem require that we have a
jack and a spade. The word, and, in statistics means that both conditions
must be met for success. Since in a deck of cards we have only one card
that satisfies both conditions, namely the jack of spades, we have only 1
chance for success out of 52 equally likely possibilities.

s (number of chances for success)
P(success) = — . p—
n  (total equally likely possibilities)

_ _ 1 (35 can also be expressed as
P(jack and spade) = 52  approximately 2% or approximately .02) ®

AND and OR Statements
Notice that the words and and or have very specific meanings in statistics.

And The word and between two or more conditions or events implies all
must be met for success.

Or The word or between two or more conditions or events implies that
either one or more may be met and that will give success.

Although many shortcut formulas are available to solve probability prob-
lems, each comes with restrictions that limit their use to a well-defined set of
circumstances that can be quite confusing. It is best to first learn to solve these
simple experiments (where we select one from a set of possibilities) by the
methods described above. The following are offered for practice.

Practice Exercises

From a 52-card deck, if we randomly select one card, what is the probability the
card will be

a. a heart or an ace?
b. a king and an ace?

a. Because we have 16 chances for success (13 hearts plus the aces of clubs,
diamonds, and spades) out of 52 equally likely possibilities,

16 Note that the ace of
P(heart or ace) = — hearts was already
counted in the 13 hearts.

b. An and statement means both conditions must be met for success. Since
there are 0 chances for success,

. 0 Note that in selecting one
P(king and ace) = — =0 card, it is impossible to
5 get both a king and an ace. |
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A chain of family video stores has their movies rated G, PG, R, X, or XX with
the following probabilities:

P(G) =31 PR)=.30 PXX)=.04
PPG)= .25 PX)=.10

If you were to randomly select a video, what would be the probability the video
would be rated

a. not G?
b. R or X or XX?

a. P(G) = .31 means 31 out of 100 were rated G. Therefore, 69 (100 — 31
= 09) must have been rated something other than G. So,

69
P G)=— - .69
(not G) 100 (or )
b. Out of 100, 30 were rated R, 10 were rated X, and 4 were rated XX. Thus,
44 (30 + 10 + 4) were rated either R or X or XX out of 100. So,

44
P(R or X or XX) = 100 (or .44) [ |

In a regional survey of 1000 customers, a particular cable TV show was rated
either favorable or unfavorable. Out of 760 favorable responses, 400 were female.
And out of the 240 unfavorable responses, 80 were female.

If you were to randomly select one respondent from the survey, what would
be the probability the respondent would be

female?

favorable and female?
favorable and male?
unfavorable or female?

male, given we already know the respondent (Note: this is referred to as a
voted favorable? conditional probability.)

P RS TR

The information above can be summarized as follows:

1000 Customers

Favorable Unfavorable
400 F 80 F
360 M 160 M

a. Because 480 were female (400 + 80),

480
P(female) = —10—00 (or .48)
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Solution

Probability

b. Since it is stated that 400 of the favorable responses were female,

40
P(favorable and female) = —— (or .40
( ) 1000 . ‘
¢. 760 rated cable TV favorably, of which 400 were female. This implies 360
were male. Thus,

P(favorable and male) = (or .36)

1000

d. An or statement implies either condition will give success. However, we
must be careful not to count the same person twice. Because we have 240
unfavorable responses plus 400 additional females (from the favorable
responses), we have 640 chances for success (240 + 400) out of 1000,
Thus,

Note: if we had reasoned there were

_ 640
P(unfavorable or female) = —— (or .64) 80 totalfemales plus 290 total
1000 unfavorable responses, we would

have counted 80 females twice.

e. The clause ‘‘given we already know the respondent voted favorable,”’ is
referred to as a conditional and the question referred to as a conditional
probability. In effect, this conditional **given . . . favorable.”" limits the
total set of possibilities to 760 favorable responses, out of which 360 males
give us success. Thus, P(male, given we know the vote was favorable) =
360 chances for success out of 760 total possibilities.

) ] 36() Note: there were 400 females
P(male, given favorable) = — (or .47). and 360 males in the 760
760 favorable responses. |

Use of Mathematical Formulas in Simple Experiments

Although it is usually easier to solve simple experiments (where we select one
from a set of possibilities) without using a formula, formulas are available and
are most often preferred. We will demonstrate two common formulas with prac-
tice problem 3, parts d and e.

Referring to practice problem 3, part d, if you were to randomly select one re-
spondent from this survey, what would be the probability the respondent would
be unfavorable or female?

The solution to practice problem 3, part d, can be solved by something known
as the addition rule: Let £, = the first event and E, = the second event defined
in a sample space. then

P(E, or E5) = P(E)) + P(E>) — P(E, and E>)

This subtracts out
the elements
counted twice.
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Defining £; as unfavorable and £, as female,

P(upfavorable = P(unfavorable) + P(female) — P(unfavorable and female)
or female)

240 480 80 _ 640
1000 1000 1000 1000

Note: 80 females had to be subtracted out, expressed as
the probability 80/1000, since they were counted twice,
once in the unfavorable group and a second time in the
female group.

If we have the situation where P(E, and E,) = 0, meaning the two events cannot
occur together, then the events are referred to as mutually exclusive and the
above formula reduces to P(E, or E>) = P(E|) + P(E»).

Referring to practice problem 3, part e, if you were to randomly select one re-
spondent from this survey, what would be the probability the respondent would
be male, given we already know the respondent voted favorable?

The solution to practice problem 3, part e, can also be solved by a form of
multiplication rule (to be discussed more fully later in the chapter), defined as

P(E, and E,
P(E,, given E>) = P(E, and £5)

P(E>)
P(male and favorabl
P(male, given favorable) = (m'te\m e
P(favorable)

Again, this is referred to as

a conditional probatility. _ 360/1000 _ 360
760/1000 760

m More Complex Experiments: Tree Diagram

Example

In the preceding examples, we selected one from a set of equally likely possi-
bilities. For instance, we selected one person from a party of 20 people, and we
selected one card from a deck of 52. However, in more complex problems, where
we select rwo or more from a set of possibilities, it is often helpful to list all the
equally likely outcomes of the experiment using a technique known as a tree
diagram.

Suppose we return to our party example. Only this time we attend a party of six
people, of which two are famous TV celebrities. We shall use the numbers, 1, 2,
3, and 4 to identify the non-TV celebrities and the numbers 5 and 6 to identify
the two famous TV celebrities.

Now, what if a huge Green Giant were to walk up, lift the roof, and reach
down into the party and randomly pluck up two people? What is the probability
the two will both be famous TV celebrities?
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Solution It the Giant had selected one person from this party, this would have been a rather
simple experiment. Selecting two is a little more complex as you will see.

To help us list all the equally likely ways we can select two people, we use
a technique known as a rree diagram, as follows:

3 5
4 6
= 6]
2 b =L =185 1R 1]
3 153 & gl BRSSP 8 62
&4 14 264 24 34 43 53 03
SIS S 35 45 54 64
G 6 6 26 36 46 56 6,5
First, we start by assuming Next, we repeat the Then, we repeat the
the giant selected person | procedure, only this procedure assuming person
on the first pick. Then we time we assume person 2 3 was selected on the first
branch out all possibilities was selected on the first pick and so on for persons
for the second pick. This pick. 4,5, and 6.
helps us list all the outcomes
where person 1 was selected
on the first pick.
Our complete listing would be as follows.
i.2 2,| 3.1 4.1 5’1 6.1 n = 30 equally likely outcomes

1.3 213 39 4.9 59 6.2 s = 2 chances for success (circled)
14 24 34 43 53 63
1.5 205 3.5 4,5 5,4 6.4

1.6 26 36 46 GO

This is called a sample space of equally likely outcomes. It represents all the
ways the giant could have reached in and first selected one person, then reached
in and selected a second person.
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Note that outcome 5,6 is considered different from outcome 6.5. It is im-
portant to maintain the order of selection. This ensures that we have a complete
listing of all equally likely outcomes,

Now we are ready to answer our question.

Since we have 2 chances for success (circled above) out of 30 equally likely
outcomes,

(number of chances for success)

P(success) = L ; .
n  (total equally likely outcomes*)

i clebei 2
POk and 5gic) = 55 (01 6.7%) u

Now let’s suppose we asked the same question but selected in a different
manner.

Suppose at our party of six, of which two are famous TV celebrities, a Green
Giant plucked up one person by the collar, replaced that one person into the
party, then later returned and plucked up one person again,

What is the probability both picks would be famous TV celebrities?

If we list our sample space of equally likely outcomes, we get

.1 2,1 3.1 4,1 5,1 6,1 n = 36 equally likely outcomes
1,2 2.2 3.2 472 5.2 6.2 s = 4 chances for success
1.3 2.3 3.3 43 5.3 6.3 (circled)

14 24 34 44 54 64

1,5 25 3.5 45 Gy 6.5
1.6 2.6 3.6 46 G 6.6

Note the addition of outcomes 1,1 and 2.2 and 3,3 and 4.4 and 5,5 and 6,6. Since
we replaced the first person, we must include the possibility that the same person
might be chosen twice.

Because we now have 4 chances for success (circled above) out of 36
equally likely outcomes,

s (number of chances for success)

P(success) = — :
n  (total equally likely outcomes)
elehrity ity 4
PG and 550080 = 2= (or 11.1%) C

We can also list sample spaces for three or more selections, as follows.

*Note: In more complex experiments, the word outcomes is used in place of possibilities.
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Solution

Example

Probability

In a woman’s wardrobe of 3 blouses (white, beige, and tan), | scarf, and 2 skirts
(navy blue and gray), a blouse and a skirt must be worn but a scarf is optional.

If we assume the woman randomly selected from each group, what is the
probability the woman will be wearing a scarf and gray skirt?

Tree Diagram Equally Likely

First Second Third Outcomes
Choice  Choice  Choice
(Blouse)  (Scarf) (Skirt)
: NB W.S.NB n = 12 equally likely outcomes
(ayy: bluz) s = 3 chances for success
S G W.S,G
w (scarl) (gray)
(white) no S NB W, no S.NB
(no scarf) : (navy blue)
G W, noS. G

{gray)

w3}
L (2

= H
v »\Q)Z

NB
B S 4 &G
(beige) no S ? NB

G

i

w @
=

oS, NB

0S,G
NB T,S.NB

0 S g

(tan) no S i NB T,no S, NB
G

T,ne08,6G
Since we have 3 chances for success (circled) out of 12 equally likely ways an
outfit can be put together,

Q)Z

s (number of chances for success)
P(success) = — .
n  (total equally likely outcomes)
3
P(scarf and gray skirt) = E (or 25%) |

Note that we randomly sampled from each category. If color matching or
personal taste were involved, the solution would be more complex.

Suppose we take a true—false quiz of four questions and we randomly guess on
each answer, what is the probability of getting every question correct?
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Solution Let C = correct answer and X = incorrect answer, our sample space of equally
likely outcomes would be as follows.

First Second Third Fourth Equally Likely
Question Question Question Question Outcomes

C
C<X

n = 16 equally likely outcomes
5§ = 1 chance for success {(circled)

(5
£
o
0

< "¢  cexe

: T s
X<C<x C.X.C.X
=% Cxxx

; e kom
X<C<x X.X.C,X
=T% XXX«

Because we have 1 chance for success (circled) out of 16 equally likely outcomes,

s (number of chances for success)
P(success) = — . —
n (total equally likely possibilities)

|
P(C and C and C and C) = E (or approximately 6.3%) ]

m More Complex Experiments: Multiplication Rules

Complex experiments (in which we select two or more from a set of possibilities)
may also be solved by formula. However, we must be careful since each formula
comes with restrictions that limits its use to a well-defined set of circumstances.

Dependent and Independent Events

In the case where two events are dependent (that is, the occurrence or nonoc-
currence of one event affects the probability associated with the other event), we
use the general multiplication rule, as follows.
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V General Multiplication Rule

For two dependent events

If £ and & are two defined events in a sample space, then
P(E and £) = P(£)P(£, given £ has already occurred)

P(£, given £ has already occurred) is often symbolically expressed as
P(@]E,). P(£ and £) also equals P(£)P( £, given £ has already
occurred).

In special cases, where the two events have no effect on each other’s prob-
ability, we call the events independent (that is, the occurrence or nonoccurrence
of one event has no effect on the probability of the other event). In which case,
the multiplication rule is greatly simplified to:

V Special Multiplication Rule

For two independent events

For three or more independent events

Example

Soiution

If £ and £ are two independent events in a sample space, then,
A& and &) = P(&£)FP(&)

Note that in 2(£) we eliminated the condition “given £, has already
occurred.”

If we can guarantee all events are independent, then we can expand our
formula to three or more events as follows:

PE and Eand & . . )= PIEVP(E)PIE) . . .

Let’s see how these rules apply to the examples we studied in the prior
section.

We attend a party of 6 people, of which 2 are famous TV celebrities. If some
Green Giant randomly plucked up 2 people by the collar, what is the probability
both will be famous TV celebrities? (Note: this is the first example solved in
section 3.3 using a tree diagram.)

First we define ‘‘selecting a celebrity on the Ist pick’ as event one (E,) and
“*selecting a celebrity on the 2nd pick’ as event two (E-).

Since the two events are dependent (that is, whether or not we select a
celebrity on the 1st pick affects the probability of selecting a celebrity on the 2nd
pick). thus we use the general multiplication rule:

P(E, and E>) = P(E|)P(E,, given £, has already occurred)

P(culcbrity and celebrity )

e Soame) = PCSTE) PGhsiey, given we chose a celebrity on Ist pick)

Ist pick 2nd pick*
2 1 2
== . — == (6.7%)
6 5 30



Example

Solution

Section 3.4 More Complex Experiments: Multiplication Rules 77

Notice that getting a celebrity on the first pick was + as we would expect. How-
ever, now, we assume the first pick occurred, that is, we picked a celebrity out
of the party. Thus, we have only 5 people left at the party with only 1 celebrity
left, so the probability of selecting a celebrity on the second pick is I chance of
success out of 5 possibilities or 4. When we multiply 2 and + , we get the same
answer as we did in the prior section 5, (or 6.7%). m

One additional comment about dependence. Note in the above case,
whether or not we selected a celebrity on the Ist pick affects the probability
associated with selecting a celebrity on the 2nd pick. In other words, if a celebrity
was chosen on the Ist pick, then P(celebrity on 2nd pick) equals —i (as stated
above). However, if a celebrity was not chosen on the st pick, the P(celebrity
on 2nd pick) equals < , which is quite different. This is what is meant when we
say the occurrence or nonoccurrence of one event affects the probability asso-
ciated with another event—that is, the two events are dependent.

The multiplication rule can also be expanded to include three or more de-
pendent events, demonstrated in the following example.

Three cards are randomly selected from a 52-card deck. Calculate the probability
all will be kings.

We can expand the multiplication rule as follows: P(E; and £- and E;) = P(E))
P(E>, given E| occurred) P(£5, given £, and E, occurred)

Let K, = selecting a king on st pick
K> = selecting a king on 2nd pick
K; = selecting a king on 3rd pick

P(K, and K> and K3) = P(K|)P(K>, given K, occurred) P(K;, given K| and K>
occurred)

4 3 2 24

= g —_—= — 1%,
52 51 50 132600 (near0%)

Note that getting a king on the Ist pick was 35, as we would expect. However,
let’s assume that this occurred—that is, we picked a king out of the deck. Thus,
we have only 3 kings left out of 51 cards, so the probability of getting a king on
the 2nd pick is 5; . Now, we assume the first two events occurred, that is. both
kings were picked from the deck, so now we have 2 kings left out of 50 cards.
Thus, the probability of getting a king on the 3rd pick is & . B

As you can see, these formulas do save us time. In other words, we do not
have to construct sample spaces of equally likely outcomes to calculate proba-
bilities. For instance, in the example given above, we would have had to construct
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a sample space of 132,600 equally likely outcomes to solve this problem. A
formidable task, indeed. But as easy as formulas are to use, they do come with
restrictions that limit their use to a well-defined set of circumstances. And we
must be careful to apply them exactly as presented.

Let’s consider the second example from section 3.3 to demonstrate the
conditions and restrictions for use of the special multiplication rule (for inde-
pendent events).

Suppose at our party of 6, of which 2 are famous TV celebrities, a Green Giant
plucked up one person by the collar, replaced that one person into the party, then
later returned and plucked up one person again. (Note: This is the second example
solved in section 3.3 using a tree diagram.)

What is the probability both picks would be famous TV celebrities?

The two events are now independent since we replaced the first person. In other
words, whether we select or do not select a celebrity on the Ist pick in no way
influences the probability of selecting a celebrity on the 2nd pick.

P(E1 and Eg) = P(Ei)P(E:)
selebrity celebrity 2 2 4
B ad PR =+ =5

Lst 2nd pick 6 36 (11. 1070)

Notice that the probability on the Ist pick was ¢ . However, because we replaced
the person back into the party, we still had six people at the party with two famous
TV celebrities. So the probability of success on the 2nd pick was also 2+ . When
multiplied, the answer is 5; (or 11.1%), which is the same answer we achieved
when listing our sample space of equally likely outcomes in section 3.3. |

One comment about independence in the preceding example: note the prob-
ability on the 2nd pick would have been ¢ no matter what the outcome of the 1st
pick (whether we picked a celebrity or not on the 1st pick). This is what is meant
by independence.

If we can guarantee all events are independent, that is, the outcome of one
event in no way influences the probability of any other event, we can use the
expanded form of the special multiplication rule, as follows:

P(El and E1 and E3 w e W ) = P(EE)P(EQ)P(E‘&) i W

Suppose at our party of 6, of which 2 are famous TV celebrities, the Green Giant
chooses 3 people, one at a time, but replaces each after the person was chosen.
What is the probability all 3 will be famous TV celebrities?

Because replacement in this case assures independence

2 2 2

PG and Sy and gty = — . = == (@r37%) @
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In a woman’s wardrobe of 3 blouses (white, beige, and tan), | scarf, and 2 skirts
(navy blue and gray), a blouse and a skirt must be worn but a scarf is optional.
(Note: This is the third example solved in section 3.3 using a tree diagram.)

It we assume the woman randomly selected from each group, what is the
probability the woman will be wearing a scarf and gray skirt?

If we randomly select from each group, we essentially have three independent
choices, since a choice from one group does not affect the probability of a choice
from any other group. Thus

P(E, and E; and E3) = P(E)P(E>)P(ES)
P(any blouse) P(scarf) P(gray skirt)

P(any blouse and scarf and gray skirt)

Il
o
=]
—
e
9
|
S

Notice we must choose a blouse and all choices give us success. Because a scarf
is optional, we have two choices (scarf or no scarf) of which one gives us success
(scarf). We must choose a skirt and there is one chance for success
(a gray skirt) out of two possibilities. =

Note that we randomly selected from each category. If color maltching or
personal taste were involved, we would have lost our independence. In other
words, say, if the woman selected a tan blouse, she may have personal preference
for wearing the scarf and navy blue skirt, in which case the probabilities asso-
ciated with the 2nd and 3rd choices would be greatly affected. These type of
problems (where the choices are dependent) are much more difficult to solve.,
since they require knowledge of the extent one choice affects another.

Violation of independence is often the reason why statistical studies go
awry since this requirement of independence is necessary for many of the for-
mulas we use later in the text when we sample. If for some reason independence
is violated, we may be obliged to use the general multiplication rule (which
assesses the effect each event has on the probability of subsequent events). Un-
fortunately, in many experiments, especially those involving people such as in
psychological or educational studies, these effects are quite difficult to assess and
sometimes impossible. So it is important when we design a study to do our best
to ensure independence when we can.

Let’s examine this property of independence with one more example.

Suppose we take a true—false quiz of 4 questions and we randomly guess on each
question, what is the probability of getting every question correct? (Note: This
is the fourth example solved in section 3.3 using a tree diagram.)
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If we guess randomly, this ensures independence, that is, whether we are correct
or not correct on one guess in no way affects the probability of being correct on
any other guess. Thus,

P(E, and E, and E; and £,) = P(E)P(E)P(E)P(EL)

Let C, = correct on Ist question
C» = correct on 2nd question
C; = correct on 3rd question
C, = correct on 4th question

P(C, and C> and C; and Cy)

Il

P(CHP(CHP(C3)P(Ca)
i 1 & 1 1

- ——. — ., — = — 6.3Y
2 2 2 2 16 e

Remember, for independence, the outcome on one event must in no way
affect the probabilities associated with any other event.

Counting Principle

Although the counting principle can be used in many circumstances, one of its
uses is to quickly count the total number of possible outcomes for an experiment.

¥V Counting Principle

For a sequence of events, in which the first event can occur in 2 ways, the
second in & ways, and the third in ¢ ways, and so on, the total number of
ways the events can occur together is

G R I

For our woman’s wardrobe experiment of 3 blouses, scarf or no scarf, and
2 skirts, how many outcomes are possible?

Because the first event, picking a blouse, can occur in 3 ways; the second event,
choosing a scarf, in 2 ways; and the third event, selecting a skirt, in 2 ways,
Total number of possible outcomes = 3 -2 - 2
=12 ]
At our party of 6 people with 2 famous TV celebrities, how many ways can we
select 2 people, given that

a. we replace the first person before we select the second?
b. we do not replace the first person?
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a. Since the first event, selecting the first person, can occur in 6 ways, and the
second event, selecting the second person, can occur in 6 ways, then

6-6

= 36

Total number of possible outcomes

b. Since the first event can occur in 6 ways and the second event can now
only occur in 5 ways,

Total number of possible outcomes = 6 - 5
=30 [ |

Other circumstances in which we may use the counting principle are as
follows.

In the 714 telephone area, how many different telephone numbers are possible?

For a telephone number we have seven events:

For the first event, selection of the first digit, we have 8 choices (2, 3. 4, 5, 6, 7.
8, and 9). Note that we cannot use the digit O or 1 as the first digit of a telephone
number. For each other digit, we have 10 choices (0,1,2,.3,4,5,6.7.8, and 9).

Total number of ways these =8-10-10-10-10- 10 - 10
seven events can occur

8,000,000 telephone numbers 8

Suppose a particular state wishes to use 3 letters followed by 3 digits for an
automobile license plate. How many different license plates are possible?

For this license plate, we have six selections,

As long as there are no restrictions on which letters or digits can be used, we
have 26 choices each for the first three selections and 10 choices each for the last
three selections,

26-26-26-10-10- 10
= 17,576,000 license plates m

Il

Total number of ways these six events can occur

In probability experiments, the counting formula is often used to count the
total number of equally likely outcomes for an experiment, denoted by # in the
probability formula,

(number of chances for success)

s
P ==
() (total equally likely outcomes)
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The counting formula can give you the total number of possible outcomes
rather quickly, however the formula generally does not lend itself for use in
calculating s, the number of chances for success.

m Early Gambling Experiments Leading
to Discovery of the Normal Curve

Example

Rationale

Early gambling experiments usually involving the tossing of coins and dice form
the theoretical underpinning for many of our formulas and the statistical proce-
dures we use today in statistics (such as, chi-square analysis and tests of propor-
tions. which are discussed at length in chapters 10 and 11). However, these early
experiments also paved the way for the original discovery of one of our most
fundamental statistical tools, the normal curve, which is the subject of chapter 4.
It is in these regards that we present the following.

A fair coin is tossed 4 times. Bets are taken as to the number of heads that would
turn up.

a. Use a tree diagram to list all equally likely outcomes.

b. Construct a histogram demonstrating how many times we would expect 0
heads. 1 head, 2 heads, 3 heads. and 4 heads to occur.

¢. Find the probability of achieving 2 heads.

d. Would you bet even money on 2 heads? Explain your reason.

Essentially we are sampling from a huge population of coin flips, where 50%
possess the attribute of heads.

p =" (or 50%)

In other words. if we were to flip this coin millions and millions of times. 509
(or extremely close to 50%) would be heads.

Now. if we were to sample from this huge population of coin flips, in this
case we are sampling 4 tosses (that is, we are selecting a sample size of n = 4),
what may we expect to happen? We know from theory and a long history of
experience, that if we were to randomly sample from such a population,

ps=p The sample proportion, p,, will be
approximately equal to the population
proportion, p.
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That is, since the population consists of 50% heads, the sample should consist of
approximately 50% heads. In the case of # = 4 tosses, we should get approxi-
mately 2 heads. However, we can also get | head or 4 heads. How can we de-
termine the percentage of times we can expect each of these outcomes to occur?

One way is to use a tree diagram to list all the equally likely outcomes that
can occur when 4 coins are tossed and simply count the number of times we
achieved zero heads, one head, two heads, three heads, and four heads, as follows:

Solution

a. We use a tree diagram to help us list the sample b. To construct the histogram,
space of equally likely outcomes.

H H,H,H, H
H < T HHHT H.H, H.H  First, we count how many
H T H,H,H. T times we obtained 0 heads.
/ T < H H.H, T,H H,H.T,H This occurred on one
T H H T, T H,H, T.T  occasion, circled at left,
H H H.T.H H so we indicate this with
H < % H,T,H,H one slash mark in our
T< T H,T.H.T HTHT - sy,
H H. T.T.H H TT-H e
T b | : Tally
<T HTTT HT.T.T |
T.H.H H 0 Heads
i HH T
T.HT H 1 Head
L i 2 Heads
T, T, H H >
TTHT 3 Heads
L&h H 4 Heads
WL
i nH. g Second, we count how many

%
/\
==
iy
o=
===
o

H

. T times we obtained | head.
H

1E

T.H This oceurred on four
T T, H, LT occasions, circled at left,
so we indicate this with
H < H T.T,H, H four slash marks in our
7 < T T,T.H, T tally.
H T, T, T,H Tally
T— . T,T,T,T e
0Heads |
1 Head il
2 Heads
3 Heads
4 Heads

Notice we have 16 equally likely outcomes. [ |
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Third, we continue for

2 heads, 3 heads. and

4 heads. The completed

tally would appear as follows.

0Heads |

1 Head L1
2 Heads T
3IHeads: I
4 Heads |

Notice, there are 16 slash
marks, one for each ditferent

outcome.

T

Fourth, we encase the
slashes in rectangular
bars, and rotate the

tally % turn counterclockwise.

B |

How

many

times

occurred
DE eSO R 3 e
Number of heads

The final histogram appears
as above.

The histogram bars are usually labeled in one of three different ways in

terms of

Frequency of occurrence

g 1 2 3 4

Number of heads

Referred to %6
as a frequency
distribution

A probability [raction

‘/lh

0 1 2 3 4

Number of heads

Referred to as
/probubilily \

distributions

A probability percentage
37'4%

0 1
Number of heads

2 3 4

No matter which way the bars are labeled, however, they all give us the same

information, as follows:

P(0 heads) = | chance in 16 = 1/16 = 6+%
P(1 head) = 4 chances in 16 = 4/16 = 25%
P(2 heads) = 6 chances in 16 = 6/16 = 374%
P(3 heads) = 4 chances in 16 = 4/16 = 25%
P(4 heads) = 1 chance in 16 = 1/16 = 6+%

¢. So. to answer the question of the probability of 2 heads, we merely look at

the results. You have 6 chances out of 16 = 374%.

d. If you did bet even money on 2 heads, unfortunately in the leng run you
would lose your money. Out of every 16 times you played the game, you
can expect to win on 6 occasions and lose on 10. Sometimes this is
expressed as odds, 6:10 (meaning, in the long run, you would average 6
wins and 10 losses out of each 16 plays).
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Although the above probabilities were based on mathematical analysis (that
is, by constructing sample spaces), experience has shown these to give reasonably
accurate estimates of what we would expect to occur in the long run in actual
practice. In other words, if we were to drop 4 coins on a table thousands and
thousands of times and record the number of heads achieved on each drop, we
would find we would get

0 heads approximately 6% of the time
1 head approximately 25% of the time
2 heads approximately 374% of the time
3 heads approximately 25% of the time
4 heads approximately 6% of the time

Now, what if we decided to drop n = 12 coins or n = 50 coins on a table,
what would we expect to get?

Well, we can determine this either mathematically, by constructing a
sample space, or we can actually drop 12 coins (or 50 coins) thousands and
thousands of times and tally the result.*

12 coins dropped 2 — 17 o
by Suppose we drop n = 12 coins on

of times a table thousands and thousands of times
and record the number of heads achieved
on each drop, we would get a distribu-
tion something like this figure.

012345678910L112

Number of heads
achieved

50 coins dropped
many thousands
of times

Suppose we drop n = 50 coins on
a table thousands and thousands of times
and recorded the number of heads
achieved on each drop, we would get a
distribution something like this figure.

20 25 30
Number of heads
achieved

Look at the two histograms above. Both are symmetrical around the value
we would most likely expect to occur. In the case of dropping n = 12 coins, we
would most likely expect approximately 6 heads (50% of 12 = 6). And indeed
we do most often get 6 heads. However on a great many occasions we get some-
what more than 6 heads, and on a great many occasions somewhat less, with the
heights of the histogram bars seeming to fall off in the shape of a bell.

*Actually, simpler techniques and formulas are available to calculate these probabilities,
which are discussed at the end of chapter 4 and in chapter 1 1.
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Notice we have a similar situation in dropping n = 50 coins. The distri-
bution is symmetrical around the value we would most likely expect, in this case
25 heads (50% of 50 = 25). However on a great many occasions we get somewhat
more than 25 heads, and on a great many occasions somewhat less, with the
heights of the histogram bars again falling off in the shape of a bell.

This bell-shaped pattern appears repeatedly with these coin experiments.

Now, you might ask, this may happen with coin tosses, where the proba-
bility of a head for a coin toss is + (50%), but what if we sampled from a different
population, say die tosses, where the probability of a particular face turning up
is - (162%)? What happens then?

Okay, let’s take 60 dice and paint one face on each blue (for identification
purposes).

60 Dice

One
blue face

R »  One
One blue face e ¢ 0
blue
One on back

60 dice dropped  Say we drop n = 60 dice on a table
many thousands -
SETiRES thousands and thousands of times,
and each time recorded the number of
blue faces that turned up. If we tally
the results into a histogram, we would

5 10 15 .. get a distribution something like this
Number of blue faces figure.
achieved

Notice the shape of the distribution. It is symmetrical about the value we
would most likely expect, in this case 10 blue faces. In other words, we would
expect about | die in 6 to turn up blue, or 10 in 60. And indeed 10 blue faces
would be our most frequently occurring value if we had constructed a sample
space or in practice if we actually dropped 60 dice many thousands of times.
However, on many occasions we get somewhat more than 10 blue faces and on
many occasions somewhat less, again with the heights of the histogram bars
falling off in the shape of a bell.

Bell-shaped distributions kept occurring with amazing regularity in these
coin experiments and in the dice experiments when the number of dice dropped
was large. This repetitive bell-shaped pattern in gambling experiments led De
Moivre (in 1733) to the initial discovery of one of the most powerful predictive
tools we have in all of statistics and the topic of our next chapter, the normal
distribution.
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m Additional Probability Topics

Although the material presented thus far provides the main thrust of the tech-
niques needed for future chapters, several additional topics are often encountered
and are presented here. Specifically we introduce the mean and standard deviation
of a discrete probability distribution, expected value, and permutations and com-
binations (combinations are further discussed in chapter 11, section 11.1).

Mean and Standard Deviation

of a Discrete Probability Distribution

In section 3.5, we constructed a distribution that offered probabilities associated
with achieving a given number of heads when a fair coin is tossed four times, as
follows:

Number of heads achieved
in four tosses

This is called a discrete probability distribution. In such a distribution, each
outcome for an experiment is associated with a specific probability of occurrence
and the sum of all probabilities equals 1.00. (Note in the above case, 1z + = +
L4 i+ L=12=100)

To calculate the mean and standard deviation of such a probability distri-
bution, we use the following two formulas.

Mean

L=Xxp(x) x: one outcome
Qix): probability of achieving this outcome

For this example,

U = Explx)
W= 0(1/16) + 1(4/16) + 2(6/18) + 3(4/16) + 4(1/16)
p=2

Standard Deviation

lo= G- oo |

For this example,

o= JIX - px

a= /(00— 2R(1/16) + (1 — 244/16) + (2 — 2P(6/16) + (3 — 2)3(4/16) + (4 — 27(1/16)
o= J/1=1
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Probability Distribution

A distribution that offers the probabilities asscciated with each possible
outcome of an experiment, such that the sum of these probabilities always
equals 1.00.

Discrete Probability Distribution

A probability distribution where each possible outcome of an experiment can
only be one of a limited number of discrete values, that is, a value that when
presented on a number line occupies only a distinct isolated point.

In other words, in the above experiment, we could only achieve 0, 1, 2, 3,
or 4 heads as outcomes, a limited number of distinct isolated points on a number
line. Note we could never achieve 14 heads or 34 heads or any values other than
these limited isolated values of 0, 1, 2, 3, or 4.

The term discrete is discussed again in section 4.4 when we introduce one
of the most frequently encountered discrete probability distributions, called the
binomial sampling distribution.

Expected Value

In the example just presented, we calculated the mean and standard deviation
(1t and ©) of a discrete probability distribution. This mean () is often referred
to as the expected value.

Expected Value

The long-range average of a repeated experiment, essentially the population
mean, M.

Expected value (EV) = p = Z xo(x)

In our experiment of tossing four coins, since @ = 2 heads, this is the
expected value. Note in this particular experiment, the expected value is also the
most frequently occurring outcome (with probability 1+ refer to the histogram at
the beginning of the section). However this is not always the case, as shown in
the following discrete probability distributions:

Yo

N
1o

7 8 12 3 4 2 0 10
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Note in the first example, the expected value, W, has the least probability of
occurring, and in the other two examples the expected value. |1, has no probability
of occurring. Keep in mind, expected value is merely an average, the average
value you would likely calculate if you repeated an experiment many many
thousands of times, added up all the outcomes, and divided by #, the total number
of values.

This concept of expected value (average value for a repeated experiment)
is used extensively in business and scientific investigations but in honor of its
origins in gambling, we introduce the following example:

Roulette is a game played by placing a bet that a ball will tumble into a particular
pocket of a spinning wheel. There are 38 available pockets (numbered 1 to 36,
0, and 00), so your chance of winning is 55 . while your chance of losing is 3 .
On a $10 bet, say, a gambling house will return $360 if you win, however the
house will keep your $10 if yvou lose. What is the EV, the expected value, for
this experiment? In other words, if you played the game many thousands of times,
added up all the winnings and losses, and divided by n, the number of times you
played, what would be your expected average (the expected value)?

This is solved as follows:

‘45 Situation Represented EV =X x p(x)
as Discrete Probability EV = (—10)(*%s) + (350)(Vis)
Distribution
Vs
é
-$10 0 $350  Important

Note the true gain for a win is $350,

£.53 not $360 (since $10 was originally yours)
u=-%.53

Thus the expected value, 1, for this experiment is —$.53, meaning if you
repeated this experiment (betting $10) many thousands of times, added up all
your losses (—$10’s) and wins (+$350), and divided by n, the number of times
you placed a bet, the average would be about —$.53. In other words, in the long
run, over many thousands of bets, you will average losing 53¢ for each bet you
place. Of course, from the point of view of the gambling house, they gain, in the
long run, on average, 53¢ for each bet you place. s}

Permutations and Combinations

In section 3.4, we introduced a useful method for quickly counting the total
number of possible outcomes for an experiment, called the counting principle.
In addition to the counting principle, other counting techniques are available,
such as the permutation and combination, denoted P, , and C, ; respectively.
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A permutation counts the number of ways 72 differentcbjects can be
arranged, s at a time, where order of arrangement is important.

nl

e,

Factorial Symbol, 1, is defined as

= G R (A = 0} R

For example,
51 = 5(4)(3)(2)(1) = 120
3l =3(2)(1) =6
il = |
0! = 1 by definition

Let’s look at permutations.

Suppose there are 5 books (A, B, C, D, and E) that are to be placed in 3 available
positions on a shelf. How many different arrangements are possible?

If order of arrangement is important, meaning book arrangement A, B, C is con-
sidered different from book arrangement A, C, B (even though the same books
are used), we use the permutation formula, as follows:

n!

Py = 60 Ways Listed
S =)t ABC BAC CAB DAB EAB
- st o ABD BAD CAD DAC EAC
T T ABE BAE CAE DAE EAD
Per = 3AB3)2)X) ACB BCA CBA DBA EBA
2 Q2)(1) ACD BCD CBD DBC EBC
Ps; = 60 ways ACE BCE CBE DBE EBD

ADB BDA CDA DCA ECA
ADC BDC CDB DCB ECB
ADE BDE CDE DCE ECD

AEB BEA CEA DEA EDA
AEC BEC CEB DEB EDB
AED BED CED DEC EDC @

In situations where order of arrangement is not important, say for instance,
if from 5 books (A, B, C, D, and E) we select reading lists of 3 (demonstrated
in the following example), we use one of the most popular counting devices in
mathematics called the combination.



